The poset of truth values1 is the poset $\smash {\webleft (\{ \mathsf{true},\mathsf{false}\} ,\preceq \webright )}$ consisting of
- The Underlying Set. The set $\{ \mathsf{true},\mathsf{false}\} $ whose elements are the truth values $\mathsf{true}$ and $\mathsf{false}$.
- The Partial Order. The partial order
\[ \preceq \colon \{ \mathsf{true},\mathsf{false}\} \times \{ \mathsf{true},\mathsf{false}\} \to \{ \mathsf{true},\mathsf{false}\} \]
on $\{ \mathsf{true},\mathsf{false}\} $ defined by2
\begin{align*} \mathsf{false}\preceq \mathsf{false}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{true},\\ \mathsf{true}\preceq \mathsf{false}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{false},\\ \mathsf{false}\preceq \mathsf{true}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{true},\\ \mathsf{true}\preceq \mathsf{true}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{true}. \end{align*}
1Further Terminology: Also called the poset of $\webleft (-1\webright )$-categories.
2This partial order coincides with logical implication.