• Functoriality. The assignments $A,B,\webleft (A,B\webright )\mapsto A\times B$ define functors
    \begin{gather*} \begin{aligned} A\times - & \colon \mathsf{Sets}\to \mathsf{Sets},\\ -\times B & \colon \mathsf{Sets}\to \mathsf{Sets}, \end{aligned}\\ -_{1}\times -_{2} \colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets}, \end{gather*}

    where $-_{1}\times -_{2}$ is the functor where

    • Action on Objects. For each $\webleft (A,B\webright )\in \text{Obj}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have

      \[ \webleft [-_{1}\times -_{2}\webright ]\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B. \]

    • Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on $\textup{Hom}$-sets

      \[ \times _{\webleft (A,B\webright ),\webleft (X,Y\webright )} \colon \mathsf{Sets}\webleft (A,X\webright )\times \mathsf{Sets}\webleft (B,Y\webright )\to \mathsf{Sets}\webleft (A\times B,X\times Y\webright ) \]

      of $\times $ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function

      \[ f\times g\colon A\times B\to X\times Y \]

      defined by

      \[ \webleft [f\times g\webright ]\webleft (a,b\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f\webleft (a\webright ),g\webleft (b\webright )\webright ) \]

      for each $\webleft (a,b\webright )\in A\times B$.

    and where $A\times -$ and $-\times B$ are the partial functors of $-_{1}\times -_{2}$ at $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: