Let $A$, $B$, and $C$ be sets.
-
Associativity. We have isomorphisms of sets1 \[ \underbrace{\text{Eq}\webleft (f\circ \text{eq}\webleft (g,h\webright ),g\circ \text{eq}\webleft (g,h\webright )\webright )}_{{}=\text{Eq}\webleft (f\circ \text{eq}\webleft (g,h\webright ),h\circ \text{eq}\webleft (g,h\webright )\webright )}\cong \text{Eq}\webleft (f,g,h\webright ) \cong \underbrace{\text{Eq}\webleft (f\circ \text{eq}\webleft (f,g\webright ),h\circ \text{eq}\webleft (f,g\webright )\webright )}_{{}=\text{Eq}\webleft (g\circ \text{eq}\webleft (f,g\webright ),h\circ \text{eq}\webleft (f,g\webright )\webright )}, \]
in $\mathsf{Sets}$, being explicitly given by
\[ \text{Eq}\webleft (f,g,h\webright )\cong \webleft\{ a\in A\ \middle |\ f\webleft (a\webright )=g\webleft (a\webright )=h\webleft (a\webright )\webright\} . \] -
Unitality. We have an isomorphism of sets
\[ \text{Eq}\webleft (f,f\webright )\cong A. \]
-
Commutativity. We have an isomorphism of sets
\[ \text{Eq}\webleft (f,g\webright ) \cong \text{Eq}\webleft (g,f\webright ). \]
-
Interaction With Composition. Let
\[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]
be functions. We have an inclusion of sets
\[ \text{Eq}\webleft (h\circ f\circ \text{eq}\webleft (f,g\webright ),k\circ g\circ \text{eq}\webleft (f,g\webright )\webright ) \subset \text{Eq}\webleft (h\circ f,k\circ g\webright ), \]where $\text{Eq}\webleft (h\circ f\circ \text{eq}\webleft (f,g\webright ),k\circ g\circ \text{eq}\webleft (f,g\webright )\webright )$ is the equaliser of the composition
\[ \text{Eq}\webleft (f,g\webright )\overset {\text{eq}\webleft (f,g\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B\underset {k}{\overset {h}{\rightrightarrows }}C. \]
- Take the equaliser of $\webleft (f,g,h\webright )$, i.e. the limit of the diagram
in $\mathsf{Sets}$.
- First take the equaliser of $f$ and $g$, forming a diagram
\[ \text{Eq}\webleft (f,g\webright )\overset {\text{eq}\webleft (f,g\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B \]
and then take the equaliser of the composition
\[ \text{Eq}\webleft (f,g\webright )\overset {\text{eq}\webleft (f,g\webright )}{\hookrightarrow }A\underset {h}{\overset {f}{\rightrightarrows }}B, \]obtaining a subset
\[ \text{Eq}\webleft (f\circ \text{eq}\webleft (f,g\webright ),h\circ \text{eq}\webleft (f,g\webright )\webright )=\text{Eq}\webleft (g\circ \text{eq}\webleft (f,g\webright ),h\circ \text{eq}\webleft (f,g\webright )\webright ) \]of $\text{Eq}\webleft (f,g\webright )$.
- First take the equaliser of $g$ and $h$, forming a diagram
\[ \text{Eq}\webleft (g,h\webright )\overset {\text{eq}\webleft (g,h\webright )}{\hookrightarrow }A\underset {h}{\overset {g}{\rightrightarrows }}B \]
and then take the equaliser of the composition
\[ \text{Eq}\webleft (g,h\webright )\overset {\text{eq}\webleft (g,h\webright )}{\hookrightarrow }A\underset {g}{\overset {f}{\rightrightarrows }}B, \]obtaining a subset
\[ \text{Eq}\webleft (f\circ \text{eq}\webleft (g,h\webright ),g\circ \text{eq}\webleft (g,h\webright )\webright )=\text{Eq}\webleft (f\circ \text{eq}\webleft (g,h\webright ),h\circ \text{eq}\webleft (g,h\webright )\webright ) \]of $\text{Eq}\webleft (g,h\webright )$.