Let $A$, $B$, $C$, and $X$ be sets.

  1. Functoriality. The assignment $\webleft (A,B,C,f,g\webright )\mapsto A\mathbin {\textstyle \coprod _{f,C,g}}B$ defines a functor
    \[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )$ to the map $\xi \colon A\mathbin {\textstyle \coprod _{C}}B\overset {\exists !}{\to }A'\mathbin {\textstyle \coprod _{C'}}B'$ given by

    \[ \xi \webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (a\webright ) & \text{if $x=\webleft [\webleft (0,a\webright )\webright ]$},\\ \psi \webleft (b\webright ) & \text{if $x=\webleft [\webleft (1,b\webright )\webright ]$} \end{cases} \]

    for each $x\in A\mathbin {\textstyle \coprod _{C}}B$, which is the unique map making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}$, we have isomorphisms of sets

    \[ \webleft (A\mathbin {\textstyle \coprod _{X}}B\webright )\mathbin {\textstyle \coprod _{Y}}C\cong \webleft (A\mathbin {\textstyle \coprod _{X}}B\webright )\mathbin {\textstyle \coprod _{B}}\webleft (B\mathbin {\textstyle \coprod _{Y}}C\webright ) \cong A\mathbin {\textstyle \coprod _{X}}\webleft (B\mathbin {\textstyle \coprod _{Y}}C\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of sets
  4. Commutativity. We have an isomorphism of sets
  5. Interaction With Coproducts. We have
  6. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets},\mathbin {\textstyle \coprod _{X}},X\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pushout diagram.
Item 2: Associativity
Omitted.
Item 3: Unitality
Omitted.
Item 4: Commutativity
Clear.
Item 5: Interaction With Coproducts
Clear.
Item 6: Symmetric Monoidality
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: