• Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cup V$ define functors
    \begin{gather*} \begin{aligned} U\cup - & \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\cup V & \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ \end{aligned}\\ -_{1}\cup -_{2} \colon \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ), \end{gather*}

    where $-_{1}\cup -_{2}$ is the functor where

    • Action on Objects. For each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, we have

      \[ \webleft [-_{1}\cup -_{2}\webright ]\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\cup V. \]

    • Action on Morphisms. For each pair of morphisms

      \begin{align*} \iota _{U} & \colon U\hookrightarrow U',\\ \iota _{V} & \colon V\hookrightarrow V’ \end{align*}

      of $\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, the image

      \[ \iota _{U}\cup \iota _{V}\colon U\cup V\hookrightarrow U'\cup V' \]

      of $\webleft (\iota _{U},\iota _{V}\webright )$ by $\cup $ is the inclusion

      \[ U\cup V\subset U'\cup V' \]

      i.e. where we have

      • If $U\subset U'$ and $V\subset V'$, then $U\cup V\subset U'\cup V'$.
    and where $U\cup -$ and $-\cup V$ are the partial functors of $-_{1}\cup -_{2}$ at $U,V\in \mathcal{P}\webleft (X\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: