Let $X$ be a set.

  1. Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto U\cap V$ define functors
    \begin{gather*} \begin{aligned} U\setminus - & \colon \webleft (\mathcal{P}\webleft (X\webright ),\supset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ -\setminus V & \colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\\ \end{aligned}\\ -_{1}\setminus -_{2} \colon \webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \supset \webright ) \to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ), \end{gather*}

    where $-_{1}\setminus -_{2}$ is the functor where

    • Action on Objects. For each $\webleft (U,V\webright )\in \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, we have

      \[ \webleft [-_{1}\setminus -_{2}\webright ]\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U\setminus V. \]

    • Action on Morphisms. For each pair of morphisms

      \begin{align*} \iota _{A} & \colon A\hookrightarrow B,\\ \iota _{U} & \colon U\hookrightarrow V \end{align*}

      of $\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright )$, the image

      \[ \iota _{U}\setminus \iota _{V}\colon A\setminus V\hookrightarrow B\setminus U \]

      of $\webleft (\iota _{U},\iota _{V}\webright )$ by $\setminus $ is the inclusion

      \[ A\setminus V\subset B\setminus U \]

      i.e. where we have

      • If $A\subset B$ and $U\subset V$, then $A\setminus V\subset B\setminus U$.
    and where $U\setminus -$ and $-\setminus V$ are the partial functors of $-_{1}\setminus -_{2}$ at $U,V\in \mathcal{P}\webleft (X\webright )$.

  2. De Morgan’s Laws. We have equalities of sets
    \begin{align*} X\setminus \webleft (U\cup V\webright ) & = \webleft (X\setminus U\webright )\cap \webleft (X\setminus V\webright ),\\ X\setminus \webleft (U\cap V\webright ) & = \webleft (X\setminus U\webright )\cup \webleft (X\setminus V\webright ) \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  3. Interaction With Unions I. We have equalities of sets
    \[ U\setminus \webleft (V\cup W\webright )=\webleft (U\setminus V\webright )\cap \webleft (U\setminus W\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  4. Interaction With Unions II. We have equalities of sets
    \[ \webleft (U\setminus V\webright )\cup W=\webleft (U\cup W\webright )\setminus \webleft (V\setminus W\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  5. Interaction With Unions III. We have equalities of sets
    \begin{align*} U\setminus \webleft (V\cup W\webright ) & = \webleft (U\cup W\webright )\setminus \webleft (V\cup W\webright )\\ & = \webleft (U\setminus V\webright )\setminus W\\ & = \webleft (U\setminus W\webright )\setminus V \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Unions IV. We have equalities of sets
    \[ \webleft (U\cup V\webright )\setminus W=\webleft (U\setminus W\webright )\cup \webleft (V\setminus W\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Intersections. We have equalities of sets
    \begin{align*} \webleft (U\setminus V\webright )\cap W & = \webleft (U\cap W\webright )\setminus V\\ & = U\cap \webleft (W\setminus V\webright ) \end{align*}

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Complements. We have an equality of sets
    \[ U\setminus V=U\cap V^{\textsf{c}} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Symmetric Differences. We have an equality of sets
    \[ U\setminus V=U\mathbin {\triangle }\webleft (U\cap V\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  10. Triple Differences. We have
    \[ U\setminus \webleft (V\setminus W\webright )=\webleft (U\cap W\webright )\cup \webleft (U\setminus V\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  11. Left Annihilation. We have
    \[ \emptyset \setminus U=\emptyset \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  12. Right Unitality. We have
    \[ U\setminus \emptyset =U \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  13. Invertibility. We have
    \[ U\setminus U = \emptyset \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  14. Interaction With Containment. The following conditions are equivalent:
    1. We have $V\setminus U\subset W$.
    2. We have $V\setminus W\subset U$.
  15. Interaction With Characteristic Functions. We have
    \[ \chi _{U\setminus V}=\chi _{U}-\chi _{U\cap V} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
See [Proof Wiki, Set Difference Over Subset] and [Proof Wiki, Set Difference With Subset Is Superset of Set Difference].
Item 2: De Morgan’s Laws
See [Proof Wiki, De Morgan's Laws (Set Theory)].
Item 3: Interaction With Unions I
See [Proof Wiki, De Morgan's Laws (Set Theory)/Set Difference/Difference With Union].
Item 4: Interaction With Unions II
Omitted.
Item 5: Interaction With Unions III
See [Proof Wiki, Set Difference With Union].
Item 6: Interaction With Unions IV
See [Proof Wiki, Set Difference Is Right Distributive Over Union].
Item 7: Interaction With Intersections
See [Proof Wiki, Intersection With Set Difference Is Set Difference With Intersection].
Item 8: Interaction With Complements
See [Proof Wiki, Set Difference As Intersection With Complement].
Item 9: Interaction With Symmetric Differences
See [Proof Wiki, Set Difference As Symmetric Difference With Intersection].
Item 10: Triple Differences
See [Proof Wiki, Set Difference With Set Difference Is Union of Set Difference With Intersection].
Item 11: Left Annihilation
Clear.
Item 12: Right Unitality
See [Proof Wiki, Set Difference With Empty Set Is Self].
Item 13: Invertibility
See [Proof Wiki, Set Difference With Self Is Empty Set].
Item 14: Interaction With Containment
Omitted.

Item 15: Interaction With Characteristic Functions
See [Proof Wiki, Characteristic Function Of Set Difference].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: