• Bijectivity. Given $U,V\in \mathcal{P}\webleft (X\webright )$, the maps
    \begin{align*} U\mathbin {\triangle }- & \colon \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ),\\ -\mathbin {\triangle }V & \colon \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \end{align*}

    are bijections with inverses given by

    \begin{align*} \webleft (U\mathbin {\triangle }-\webright )^{-1} & = -\cup \webleft (U\cap -\webright ),\\ \webleft (-\mathbin {\triangle }V\webright )^{-1} & = -\cup \webleft (V\cap -\webright ). \end{align*}

    Moreover, the map

    is a bijection of $\mathcal{P}\webleft (X\webright )$ onto itself sending $U$ to $V$ and $V$ to $U$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: