• Interaction With Powersets and Groups. Let $X$ be a set.
    1. The quadruple $\webleft (\mathcal{P}\webleft (X\webright ),\mathbin {\triangle },\emptyset ,\text{id}_{\mathcal{P}\webleft (X\webright )}\webright )$ is an abelian group.[1]
    2. Every element of $\mathcal{P}\webleft (X\webright )$ has order $2$ with respect to $\mathbin {\triangle }$, and thus $\mathcal{P}\webleft (X\webright )$ is a Boolean group (i.e. an abelian $2$-group).

Footnotes

[1] Here are some examples:
  1. When $X=\emptyset $, we have an isomorphism of groups between $\mathcal{P}\webleft (\emptyset \webright )$ and the trivial group:
    \[ \webleft (\mathcal{P}\webleft (\emptyset \webright ),\mathbin {\triangle },\emptyset ,\text{id}_{\mathcal{P}\webleft (\emptyset \webright )}\webright ) \cong \text{pt}. \]
  2. When $X=\text{pt}$, we have an isomorphism of groups between $\mathcal{P}\webleft (\text{pt}\webright )$ and $\mathbb {Z}_{/2}$:
    \[ \webleft (\mathcal{P}\webleft (\text{pt}\webright ),\mathbin {\triangle },\emptyset ,\text{id}_{\mathcal{P}\webleft (\text{pt}\webright )}\webright ) \cong \mathbb {Z}_{/2}. \]
  3. When $X=\webleft\{ 0,1\webright\} $, we have an isomorphism of groups between $\mathcal{P}\webleft (\webleft\{ 0,1\webright\} \webright )$ and $\mathbb {Z}_{/2}\times \mathbb {Z}_{/2}$:
    \[ \webleft (\mathcal{P}\webleft (\webleft\{ 0,1\webright\} \webright ),\mathbin {\triangle },\emptyset ,\text{id}_{\mathcal{P}\webleft (\webleft\{ 0,1\webright\} \webright )}\webright ) \cong \mathbb {Z}_{/2}\times \mathbb {Z}_{/2}. \]

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: