The characteristic function of $x$ is the function1

\[ \chi _{x}\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

defined by

\[ \chi _{x} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{\webleft\{ x\webright\} }, \]

i.e. by

\[ \chi _{x}\webleft (y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]

for each $y\in X$.


1Further Notation: Also written $\chi ^{x}$, $\chi _{X}\webleft (x,-\webright )$, or $\chi _{X}\webleft (-,x\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: