• Adjointness. We have an adjunction[1]
    witnessed by a bijection
    \[ \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \cong \mathsf{Sets}\webleft (X,Y\webright ), \]

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $\webleft (Y,\preceq \webright )\in \text{Obj}\webleft (\mathsf{Pos}^{\mathsf{cocomp.}}\webright )$, where the maps witnessing this bijection are given by

    • The map

      \[ \chi ^{*}_{X} \colon \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \to \mathsf{Sets}\webleft (X,Y\webright ) \]

      defined by

      \[ \chi ^{*}_{X}\webleft (f\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\circ \chi _{X}, \]

      i.e. by sending a cocontinuous morphism of posets $f\colon \mathcal{P}\webleft (X\webright )\to Y$ to the composition

      \[ X \overset {\chi _{X}}{\hookrightarrow } \mathcal{P}\webleft (X\webright ) \overset {f}{\to } Y. \]

    • The map

      \[ \text{Lan}_{\chi _{X}} \colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}^{\mathsf{cocomp.}}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (Y,\preceq \webright )\webright ) \]

      is given by sending a function $f\colon X\to Y$ to its left Kan extension along $\chi _{X}$,

      Moreover, $\text{Lan}_{\chi _{X}}\webleft (f\webright )$ can be explicitly computed by

      $\displaystyle \webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright ) \cong \int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )$

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\int ^{x\in X}\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      (by Proposition 2.4.2.1.1)

      $\displaystyle \phantom{\webleft [\text{Lan}_{\chi _{X}}\webleft (f\webright )\webright ]\webleft (U\webright )} \cong \rlap {\bigvee _{x\in X}\webleft (\chi _{U}\webleft (x\webright )\odot f\webleft (x\webright )\webright )}\phantom{\int ^{x\in X}\chi _{\mathcal{P}\webleft (X\webright )}\webleft (\chi _{x},U\webright )\odot f\webleft (x\webright )}$

      for each $U\in \mathcal{P}\webleft (X\webright )$, where:

      • $\bigvee $ is the join in $\webleft (Y,\preceq \webright )$.
      • We have

        \begin{align*} \mathsf{true}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright ),\\ \mathsf{false}\odot f\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\varnothing _{Y}, \end{align*}

        where $\varnothing _{Y}$ is the minimal element of $\webleft (Y,\preceq \webright )$.


Footnotes

[1] In this sense, $\mathcal{P}\webleft (A\webright )$ is the free cocompletion of $A$. (Note that, despite its name, however, this is not an idempotent operation, as we have $\mathcal{P}\webleft (\mathcal{P}\webleft (A\webright )\webright )\neq \mathcal{P}\webleft (A\webright )$.)

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: