The direct image function associated to $f$ is the function

\[ f_{*}\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

defined by[1][2]

\begin{align*} f_{*}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ b\in B\ \middle |\ \begin{aligned} & \text{there exists some $a\in U$}\\ & \text{such that $b=f\webleft (a\webright )$} \end{aligned} \webright\} \\ & = \webleft\{ f\webleft (a\webright )\in B\ \middle |\ a\in U\webright\} \end{align*}

for each $U\in \mathcal{P}\webleft (A\webright )$.


Footnotes

[1] Further Terminology: The set $f\webleft (U\webright )$ is called the direct image of $U$ by $f$.
[2] We also have
\[ f_{*}\webleft (U\webright )=B\setminus f_{!}\webleft (A\setminus U\webright ); \]
see Item 9 of Proposition 2.4.4.1.4.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: