• Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
    \[ \webleft (f\boxtimes _{X'\times Y'}g\webright )^{-1}\webleft (U'\boxtimes _{X'\times Y'} V'\webright )=f^{-1}\webleft (U'\webright )\boxtimes _{X\times Y} g^{-1}\webleft (V'\webright ) \]

    for each $U'\in \mathcal{P}\webleft (X'\webright )$ and each $V'\in \mathcal{P}\webleft (Y'\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: