4.1.3 The Category of Pointed Sets

The category of pointed sets is the category $\mathsf{Sets}_{*}$ defined equivalently as:

  • The homotopy category of the $\infty $-category $\mathsf{Mon}_{\mathbb {E}_{0}}\webleft (\mathrm{N}_{\bullet }\webleft (\mathsf{Sets}\webright ),\text{pt}\webright )$ of .
  • The category $\mathsf{Sets}_{*}$ of .

In detail, the category of pointed sets is the category $\mathsf{Sets}_{*}$ where:

  • Objects. The objects of $\mathsf{Sets}_{*}$ are pointed sets.
  • Morphisms. The morphisms of $\mathsf{Sets}_{*}$ are morphisms of pointed sets.
  • Identities. For each $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the unit map

    \[ \mathbb {1}^{\mathsf{Sets}_{*}}_{\webleft (X,x_{0}\webright )} \colon \text{pt}\to \mathsf{Sets}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (X,x_{0}\webright )\webright ) \]

    of $\mathsf{Sets}_{*}$ at $\webleft (X,x_{0}\webright )$ is defined by1

    \[ \text{id}^{\mathsf{Sets}_{*}}_{\webleft (X,x_{0}\webright )} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{X}. \]

  • Composition. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the composition map

    \[ \circ ^{\mathsf{Sets}_{*}}_{\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )} \colon \mathsf{Sets}_{*}\webleft (\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\webright ) \times \mathsf{Sets}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\webright ) \to \mathsf{Sets}_{*}\webleft (\webleft (X,x_{0}\webright ),\webleft (Z,z_{0}\webright )\webright ) \]

    of $\mathsf{Sets}_{*}$ at $\webleft (\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\webright )$ is defined by2
    \[ g\mathbin {{\circ }^{\mathsf{Sets}_{*}}_{\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]


1Note that $\text{id}_{X}$ is indeed a morphism of pointed sets, as we have $\text{id}_{X}\webleft (x_{0}\webright )=x_{0}$.
2Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have
in terms of diagrams.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: