• Associativity. We have an isomorphism of pointed sets
    \[ \webleft (\webleft (X\times Y\webright )\times Z,\webleft (\webleft (x_{0},y_{0}\webright ),z_{0}\webright )\webright ) \cong \webleft (X\times \webleft (Y\times Z\webright ),\webleft (x_{0},\webleft (y_{0},z_{0}\webright )\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: