The coproduct of the family $\smash {\webleft\{ \webleft (X_{i},x^{i}_{0}\webright )\webright\} _{i\in I}}$, also called their wedge sum, is the pair consisting of:
- The Colimit. The pointed set $\webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )$ consisting of:
- The Underlying Set. The set $\bigvee _{i\in I}X_{i}$ defined by
\[ \bigvee _{i\in I}X_{i}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\coprod _{i\in I}X_{i}\webright )/\mathord {\sim }, \]
where $\mathord {\sim }$ is the equivalence relation on $\coprod _{i\in I}X_{i}$ given by declaring
\[ \webleft (i,x^{i}_{0}\webright )\sim \webleft (j,x^{j}_{0}\webright ) \]for each $i,j\in I$.
- The Basepoint. The element $p_{0}$ of $\bigvee _{i\in I}X_{i}$ defined by
\begin{align*} p_{0} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (i,x^{i}_{0}\webright )\webright ]\\ & = \webleft [\webleft (j,x^{j}_{0}\webright )\webright ] \end{align*}
for any $i,j\in I$.
- The Underlying Set. The set $\bigvee _{i\in I}X_{i}$ defined by
- The Cocone. The collection
\[ \webleft\{ \mathrm{inj}_{i} \colon \webleft (X_{i},x^{i}_{0}\webright )\to \webleft (\bigvee _{i\in I}X_{i},p_{0}\webright )\webright\} _{i\in I} \]
of morphism of pointed sets given by
\[ \mathrm{inj}_{i}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (i,x\webright ) \]for each $x\in X_{i}$ and each $i\in I$.