The coproduct of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$, also called their wedge sum, is the pair consisting of:
- The Colimit. The pointed set $\webleft (X\vee Y,p_{0}\webright )$ consisting of:
- The Underlying Set. The set $X\vee Y$ defined bywhere $\mathord {\sim }$ is the equivalence relation on $X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y$ obtained by declaring $\webleft (0,x_{0}\webright )\sim \webleft (1,y_{0}\webright )$.
- The Basepoint. The element $p_{0}$ of $X\vee Y$ defined by
\begin{align*} p_{0} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x_{0}\webright )\webright ]\\ & = \webleft [\webleft (1,y_{0}\webright )\webright ]. \end{align*}
- The Cocone. The morphisms of pointed sets
\begin{align*} \mathrm{inj}_{1} & \colon \webleft (X,x_{0}\webright ) \to \webleft (X\vee Y,p_{0}\webright ),\\ \mathrm{inj}_{2} & \colon \webleft (Y,y_{0}\webright ) \to \webleft (X\vee Y,p_{0}\webright ), \end{align*}
given by
\begin{align*} \mathrm{inj}_{1}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (0,x\webright )\webright ],\\ \mathrm{inj}_{2}\webleft (y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,y\webright )\webright ], \end{align*}for each $x\in X$ and each $y\in Y$.