• Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\mathbin {\textstyle \coprod _{f,Z,g}}Y$ defines a functor
    \[ -_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}_{*}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\mathbin {\textstyle \coprod _{-_{3}}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets

    \[ \xi \colon \webleft (X\mathbin {\textstyle \coprod _{Z}}Y,p_{0}\webright )\overset {\exists !}{\to }\webleft (X'\mathbin {\textstyle \coprod _{Z'}}Y',p'_{0}\webright ) \]

    given by

    \[ \xi \webleft (p\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \phi \webleft (x\webright ) & \text{if $p=\webleft [\webleft (0,x\webright )\webright ]$},\\ \psi \webleft (y\webright ) & \text{if $p=\webleft [\webleft (1,y\webright )\webright ]$} \end{cases} \]

    for each $p\in X\mathbin {\textstyle \coprod _{Z}}Y$, which is the unique morphism of pointed sets making the diagram

    commute.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: