Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets and let $f,g,h\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be morphisms of pointed sets.

  1. Associativity. We have isomorphisms of pointed sets
    \[ \underbrace{\text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ f,\text{coeq}\webleft (f,g\webright )\circ h\webright )}_{{}=\text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ g,\text{coeq}\webleft (f,g\webright )\circ h\webright )}\cong \text{CoEq}\webleft (f,g,h\webright ) \cong \underbrace{\text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ g\webright )}_{{}=\text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ h\webright )}, \]

    where $\text{CoEq}\webleft (f,g,h\webright )$ is the colimit of the diagram

    in $\mathsf{Sets}_{*}$.

  2. Unitality. We have an isomorphism of pointed sets
    \[ \text{CoEq}\webleft (f,f\webright )\cong B. \]
  3. Commutativity. We have an isomorphism of pointed sets
    \[ \text{CoEq}\webleft (f,g\webright ) \cong \text{CoEq}\webleft (g,f\webright ). \]


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: