5.1.1 Left Bilinear Morphisms of Pointed Sets
Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, and $\webleft (Z,z_{0}\webright )$ be pointed sets.
A left bilinear morphism of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is a map of sets
\[ f \colon X\times Y \to Z \]
satisfying the following condition:1,2
- Left Unital Bilinearity. The diagram
commutes, i.e. for each $y\in Y$, we have
\[ f\webleft (x_{0},y\webright ) = z_{0}. \]
The set of left bilinear morphisms of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is the set $\smash {\textup{Hom}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )}$ defined by
\[ \textup{Hom}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \textup{Hom}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )\ \middle |\ \text{$f$ is left bilinear}\webright\} . \]