The set of right bilinear morphisms of pointed sets from $\webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )$ to $\webleft (Z,z_{0}\webright )$ is the set $\smash {\textup{Hom}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright )}$ defined by

\[ \textup{Hom}^{\otimes ,\mathrm{R}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \textup{Hom}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )\ \middle |\ \text{$f$ is right bilinear}\webright\} . \]

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: