• The Cotensor Coevaluation Map. For each $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ and each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have a map
    \[ \mathrm{coev}^{\pitchfork }_{A,X}\colon A\to \mathsf{Sets}_{*}\webleft (A\pitchfork X,X\webright ), \]

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ and $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, and given by

    \[ \mathrm{coev}^{\pitchfork }_{A,X}\webleft (a\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[\webleft [\webleft (x_{b}\webright )_{b\in A}\webright ]\mapsto x_{a}]\mspace {-3mu}] \]

    for each $a\in A$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: