Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto \webleft [X,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$ define functors
\[ \begin{array}{ccc} \webleft [X,-\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ {\webleft [-,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}}\colon \mkern -15mu & \mathsf{Sets}^{\mathrlap {\mathsf{op}}}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ {\webleft [-_{1},-_{2}\webright ]^{\lhd }_{\mathsf{Sets}_{*}}}\colon \mkern -15mu & \mathsf{Sets}^{\mathsf{op}}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]
In particular, given pointed maps
\begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}
the induced map
\[ \webleft [f,g\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\colon \webleft [A,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\to \webleft [X,B\webright ]^{\lhd }_{\mathsf{Sets}_{*}} \]
is given by
\[ \webleft [f,g\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webleft (\webleft [\webleft (y_{a}\webright )_{a\in A}\webright ]\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (g\webleft (y_{f\webleft (x\webright )}\webright )\webright )_{x\in X}\webright ] \]
for each $\webleft [\webleft (y_{a}\webright )_{a\in A}\webright ]\in \webleft [A,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$.