The smash product of pointed sets may be described as follows:

  • The smash product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair $\webleft (\webleft (X\wedge Y,x_{0}\wedge y_{0}\webright ),\iota \webright )$ consisting of
    • A pointed set $\webleft (X\wedge Y,x_{0}\wedge y_{0}\webright )$;
    • A bilinear morphism of pointed sets $\iota \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\wedge Y$;
    satisfying the following universal property:

    • Given another such pair $\webleft (\webleft (Z,z_{0}\webright ),f\webright )$ consisting of
      • A pointed set $\webleft (Z,z_{0}\webright )$;
      • A bilinear morphism of pointed sets $f\colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\wedge Y$;
      there exists a unique morphism of pointed sets $X\wedge Y\overset {\exists !}{\to }Z$ making the diagram

      commute.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: