• Compatibility With Strong Unitality Constraints. The diagrams
    commute, i.e. we have
    \begin{align*} \Delta ^{\wedge }_{S^{0}} & = \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\\ & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}, \end{align*}

    where we recall that the equalities

    \begin{align*} \lambda ^{\mathsf{Sets}_{*}}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*}}_{S^{0}},\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}\end{align*}

    are always true in any monoidal category by , of .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: