-
The morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is a representably full morphism.
-
For each pair of relations $S,T\colon X\mathrel {\rightrightarrows \kern -9.5pt\mathrlap {|}\kern 6pt}A$, the following condition is satisfied:
- If $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, then $S\subset T$.
-
The functor
\[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]
is full.
-
For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
-
The functor
\[ R_{!}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]
is full.
-
For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.