Let $R$, $S$, $R_{1}$, and $R_{2}$ be relations from $A$ to $B$, and let $S_{1}$ and $S_{2}$ be relations from $B$ to $C$.
-
Interaction With Inverses. We have
\[ \webleft (R\cup S\webright )^{\dagger } = R^{\dagger }\cup S^{\dagger }. \]
-
Interaction With Composition. We have
\[ \webleft (S_{1}\mathbin {\diamond }R_{1}\webright ) \cup \webleft (S_{2}\mathbin {\diamond }R_{2}\webright ) \mathrel {\smash {\overset {\scriptscriptstyle \mathrm{poss.}}\neq }}\webleft (S_{1}\cup S_{2}\webright ) \mathbin {\diamond }\webleft (R_{1}\cup R_{2}\webright ). \]