Let $A$, $B$, $X$, and $Y$ be sets.
-
Interaction With Inverses. Let
\begin{align*} R & \colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A,\\ S & \colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X \end{align*}
We have
\[ \webleft (R\times S\webright )^{\dagger } = R^{\dagger }\times S^{\dagger }. \]
-
Interaction With Composition. Let
\begin{align*} R_{1} & \colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B,\\ S_{1} & \colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C,\\ R_{2} & \colon X\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Y,\\ S_{2} & \colon Y\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}Z \end{align*}
be relations. We have
\[ \webleft (S_{1}\mathbin {\diamond }R_{1}\webright )\times \webleft (S_{2}\mathbin {\diamond }R_{2}\webright )=\webleft (S_{1}\times S_{2}\webright )\mathbin {\diamond }\webleft (R_{1}\times R_{2}\webright ). \]