Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, and $T\colon C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}D$ be relations.

  1. Interaction With Ranges and Domains. We have
    \begin{align*} \mathrm{dom}\webleft (S\mathbin {\diamond }R\webright ) & \subset \mathrm{dom}\webleft (R\webright ),\\ \mathrm{range}\webleft (S\mathbin {\diamond }R\webright ) & \subset \mathrm{range}\webleft (S\webright ). \end{align*}
  2. Associativity. We have
    \[ \webleft (T\mathbin {\diamond }S\webright )\mathbin {\diamond }R = T\mathbin {\diamond }\webleft (S\mathbin {\diamond }R\webright ). \]
  3. Unitality. We have
    \begin{align*} \chi _{B}\mathbin {\diamond }R & = R,\\ R\mathbin {\diamond }\chi _{A} & = R. \end{align*}
  4. Interaction With Inverses. We have
    \[ \webleft (S\mathbin {\diamond }R\webright )^{\dagger } = R^{\dagger }\mathbin {\diamond }S^{\dagger }. \]
  5. Interaction With Composition. We have
    \begin{align*} \chi _{B} & \subset R\mathbin {\diamond }R^{\dagger },\\ \chi _{A} & \subset R^{\dagger }\mathbin {\diamond }R. \end{align*}

Item 1: Interaction With Ranges and Domains
Clear.
Item 2: Associativity
Indeed, we have

\begin{align*} \webleft (T\mathbin {\diamond }S\webright )\mathbin {\diamond }R & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\int ^{y\in C}T^{-_{1}}_{x}\times S^{x}_{-_{2}}\webright )\mathbin {\diamond }R\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{x\in B}\webleft (\int ^{y\in C}T^{-_{1}}_{x}\times S^{x}_{y}\webright )\mathbin {\diamond }R^{y}_{-_{2}}\\ & = \int ^{x\in B}\int ^{y\in C}\webleft (T^{-_{1}}_{x}\times S^{x}_{y}\webright )\mathbin {\diamond }R^{y}_{-_{2}}\\ & = \int ^{y\in C}\int ^{x\in B}\webleft (T^{-_{1}}_{x}\times S^{x}_{y}\webright )\mathbin {\diamond }R^{y}_{-_{2}}\\ & = \int ^{y\in C}\int ^{x\in B}T^{-_{1}}_{x}\times \webleft (S^{x}_{y}\mathbin {\diamond }R^{y}_{-_{2}}\webright )\\ & = \int ^{x\in B}T^{-_{1}}_{x}\times \webleft (\int ^{y\in C}S^{x}_{y}\mathbin {\diamond }R^{y}_{-_{2}}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{x\in B}T^{-_{1}}_{x}\times \webleft (S\mathbin {\diamond }R\webright )^{x}_{-_{2}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}T\mathbin {\diamond }\webleft (S\mathbin {\diamond }R\webright ). \end{align*}

In the language of relations, given $a\in A$ and $d\in D$, the stated equality witnesses the equivalence of the following two statements:

  1. We have $a\sim _{\webleft (T\mathbin {\diamond }S\webright )\mathbin {\diamond }R}d$, i.e. there exists some $b\in B$ such that:
    1. We have $a\sim _{R}b$;
    2. We have $b\sim _{T\mathbin {\diamond }S}d$, i.e. there exists some $c\in C$ such that:
      1. We have $b\sim _{S}c$;
      2. We have $c\sim _{T}d$;
  2. We have $a\sim _{T\mathbin {\diamond }\webleft (S\mathbin {\diamond }R\webright )}d$, i.e. there exists some $c\in C$ such that:
    1. We have $a\sim _{S\mathbin {\diamond }R}c$, i.e. there exists some $b\in B$ such that:
      1. We have $a\sim _{R}b$;
      2. We have $b\sim _{S}c$;
    2. We have $c\sim _{T}d$;

both of which are equivalent to the statement

  • There exist $b\in B$ and $c\in C$ such that $a\sim _{R}b\sim _{S}c\sim _{T}d$.
Item 3: Unitality
Indeed, we have
\begin{align*} \chi _{B}\mathbin {\diamond }R & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{x\in B}\webleft (\chi _{B}\webright )^{-_{1}}_{x}\times R^{x}_{-_{2}}\\ & = \bigvee _{x\in B}\webleft (\chi _{B}\webright )^{-_{1}}_{x}\times R^{x}_{-_{2}}\\ & = \bigvee _{\substack {x\in B\\ x=-_{1} }}R^{x}_{-_{2}}\\ & = R^{-_{1}}_{-_{2}}, \end{align*}

and

\begin{align*} R\mathbin {\diamond }\chi _{A} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int ^{x\in A}R^{-_{1}}_{x}\times \webleft (\chi _{A}\webright )^{x}_{-_{2}}\\ & = \bigvee _{x\in B}R^{-_{1}}_{x}\times \webleft (\chi _{A}\webright )^{x}_{-_{2}}\\ & = \bigvee _{\substack {x\in B\\ x=-_{2} }}R^{-_{1}}_{x}\\ & = R^{-_{1}}_{-_{2}}. \end{align*}

In the language of relations, given $a\in A$ and $b\in B$:

  • The equality

    \[ \chi _{B}\mathbin {\diamond }R=R \]

    witnesses the equivalence of the following two statements:

    1. We have $a\sim _{b}B$.
    2. There exists some $b'\in B$ such that:
      1. We have $a\sim _{R}b'$
      2. We have $b'\sim _{\chi _{B}}b$, i.e. $b'=b$.

  • The equality

    \[ R\mathbin {\diamond }\chi _{A}=R \]

    witnesses the equivalence of the following two statements:

    1. There exists some $a'\in A$ such that:
      1. We have $a\sim _{\chi _{B}}a'$, i.e. $a=a'$.
      2. We have $a'\sim _{R}b$
    2. We have $a\sim _{b}B$.

Item 4: Interaction With Inverses
Clear.
Item 5: Interaction With Composition
Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: