Action on Morphisms. For each $R,S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$, the action on $\textup{Hom}$-sets
\[ \mathbf{Coll}_{R,S}\colon \textup{Hom}_{\mathbf{Rel}\webleft (A,B\webright )}\webleft (R,S\webright ) \to \mathsf{Pos}\webleft (\mathbf{Coll}\webleft (R\webright ),\mathbf{Coll}\webleft (S\webright )\webright ) \]
of $\mathbf{Coll}$ at $\webleft (R,S\webright )$ is given by sending an inclusion
\[ \iota \colon R\subset S \]
to the morphism
\[ \mathbf{Coll}\webleft (\iota \webright )\colon \mathbf{Coll}\webleft (R\webright )\to \mathbf{Coll}\webleft (S\webright ) \]
of posets over $\Delta ^{1}$ defined by
\[ \webleft [\mathbf{Coll}\webleft (\iota \webright )\webright ]\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x \]
for each $x\in \mathbf{Coll}\webleft (R\webright )$.
2