• Functoriality. The assignment $V\mapsto R_{-1}\webleft (V\webright )$ defines a functor
    \[ R_{-1}\colon \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have

      \[ \webleft [R_{-1}\webright ]\webleft (V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{-1}\webleft (V\webright ); \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (B\webright )$:
      • If $U\subset V$, then $R_{-1}\webleft (U\webright )\subset R_{-1}\webleft (V\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: