Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
-
Functionality I. The assignment $R\mapsto R^{-1}$ defines a function
\[ \webleft (-\webright )^{-1}\colon \mathrm{Rel}\webleft (A,B\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ). \]
-
Functionality II. The assignment $R\mapsto R^{-1}$ defines a function
\[ \webleft (-\webright )^{-1}\colon \mathrm{Rel}\webleft (A,B\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\webright ). \]
-
Interaction With Identities. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have1
\[ \webleft (\chi _{A}\webright )^{-1}=\text{id}_{\mathcal{P}\webleft (A\webright )}; \]
- Interaction With Composition. For each pair of composable relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, we have2
1That is, the postcomposition
\[ \webleft (\chi _{A}\webright )^{-1}\colon \mathrm{Rel}\webleft (\text{pt},A\webright )\to \mathrm{Rel}\webleft (\text{pt},A\webright ) \]
is equal to $\text{id}_{\mathrm{Rel}\webleft (\text{pt},A\webright )}$.
2That is, we have