Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
-
Functionality I. The assignment $R\mapsto R_{!}$ defines a function
\[ \webleft (-\webright )_{!}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ). \]
-
Functionality II. The assignment $R\mapsto R_{!}$ defines a function
\[ \webleft (-\webright )_{!}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \textup{Hom}_{\mathsf{Pos}}\webleft (\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\webright ). \]
-
Interaction With Identities. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
\[ \webleft (\text{id}_{A}\webright )_{!}=\text{id}_{\mathcal{P}\webleft (A\webright )}; \]
- Interaction With Composition. For each pair of composable relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, we have