7.4.6 Functoriality of Powersets: Relations on Powersets

Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

The relation on powersets associated to $R$ is the relation

\[ \mathcal{P}\webleft (R\webright )\colon \mathcal{P}\webleft (A\webright )\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}\mathcal{P}\webleft (B\webright ) \]

defined by1

\[ \mathcal{P}\webleft (R\webright )^{V}_{U}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathbf{Rel}\webleft (\chi _{\text{pt}},V\mathbin {\diamond }R\mathbin {\diamond }U\webright ) \]

for each $U\in \mathcal{P}\webleft (A\webright )$ and each $V\in \mathcal{P}\webleft (B\webright )$.


1Illustration:

In detail, we have $U\sim _{\mathcal{P}\webleft (R\webright )}V$ iff the following equivalent conditions hold:

  • We have $\chi _{\text{pt}}\subset V\mathbin {\diamond }R\mathbin {\diamond }U$.
  • We have $\webleft (V\mathbin {\diamond }R\mathbin {\diamond }U\webright )^{\star }_{\star }=\mathsf{true}$, i.e. we have

    \[ \int ^{a\in A}\int ^{b\in B}V^{\star }_{b}\times R^{b}_{a}\times U^{a}_{\star }=\mathsf{true}. \]

  • There exists some $a\in A$ and some $b\in B$ such that:
    • We have $U^{a}_{\star }=\mathsf{true}$;
    • We have $R^{b}_{a}=\mathsf{true}$;
    • We have $V^{\star }_{b}=\mathsf{true}$.
  • There exists some $a\in A$ and some $b\in B$ such that:
    • We have $a\in U$;
    • We have $a\sim _{R}b$;
    • We have $b\in V$.

The assignment $R\mapsto \mathcal{P}\webleft (R\webright )$ defines a functor

\[ \mathcal{P}\colon \mathrm{Rel}\to \mathrm{Rel}. \]

Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: