7.4.6 Functoriality of Powersets: Relations on Powersets
Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
The relation on powersets associated to $R$ is the relation
\[ \mathcal{P}\webleft (R\webright )\colon \mathcal{P}\webleft (A\webright )\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}\mathcal{P}\webleft (B\webright ) \]
defined by1
\[ \mathcal{P}\webleft (R\webright )^{V}_{U}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathbf{Rel}\webleft (\chi _{\text{pt}},V\mathbin {\diamond }R\mathbin {\diamond }U\webright ) \]
for each $U\in \mathcal{P}\webleft (A\webright )$ and each $V\in \mathcal{P}\webleft (B\webright )$.
The assignment $R\mapsto \mathcal{P}\webleft (R\webright )$ defines a functor
\[ \mathcal{P}\colon \mathrm{Rel}\to \mathrm{Rel}. \]
Omitted.