7.4.1 Foundations

Let $A$ be a set.

A relation $R$ is an equivalence relation if it is reflexive, symmetric, and transitive.[1]

The kernel of a function $f\colon A\to B$ is the equivalence relation $\mathord {\sim }_{\mathrm{Ker}\webleft (f\webright )}$ on $A$ obtained by declaring $a\sim _{\mathrm{Ker}\webleft (f\webright )}b$ iff $f\webleft (a\webright )=f\webleft (b\webright )$.[2]

Let $A$ and $B$ be sets.

  1. The set of equivalence relations from $A$ to $B$ is the subset $\smash {\mathrm{Rel}^{\mathrm{eq}}\webleft (A,B\webright )}$ of $\mathrm{Rel}\webleft (A,B\webright )$ spanned by the equivalence relations.
  2. The poset of relations from $A$ to $B$ is is the subposet $\smash {\mathbf{Rel}^{\text{eq}}\webleft (A,B\webright )}$ of $\mathbf{Rel}\webleft (A,B\webright )$ spanned by the equivalence relations.


Footnotes

[1] Further Terminology: If instead $R$ is just symmetric and transitive, then it is called a partial equivalence relation.
[2] The kernel $\mathrm{Ker}\webleft (f\webright )\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ of $f$ is the underlying functor of the monad induced by the adjunction $\text{Gr}\webleft (f\webright )\dashv f^{-1}\colon A\mathbin {\rightleftarrows }B$ in $\textbf{Rel}$ of Chapter 6: Constructions With Relations, Item 2 of Proposition 6.3.1.1.2.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: