Let $\webleft (X,\preceq _{X}\webright )$ be a poset.
-
The posetal category associated to $\webleft (X,\preceq _{X}\webright )$ is the category $X_{\mathsf{pos}}$ where
- Objects. We have
\[ \text{Obj}\webleft (X_{\mathsf{pos}}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \]
- Morphisms. For each $a,b\in \text{Obj}\webleft (X_{\mathsf{pos}}\webright )$, we have
\[ \textup{Hom}_{X_{\mathsf{pos}}}\webleft (a,b\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \text{pt}& \text{if $a\preceq _{X}b$},\\ \text{Ø}& \text{otherwise.}\end{cases} \]
- Identities. For each $a\in \text{Obj}\webleft (X_{\mathsf{pos}}\webright )$, the unit map
\[ \mathbb {1}^{X_{\mathsf{pos}}}_{a}\colon \text{pt}\to \textup{Hom}_{X_{\mathsf{pos}}}\webleft (a,a\webright ) \]
of $X_{\mathsf{pos}}$ at $a$ is given by the identity map.
- Composition. For each $a,b,c\in \text{Obj}\webleft (X_{\mathsf{pos}}\webright )$, the composition map
\[ \circ ^{X_{\mathsf{pos}}}_{a,b,c}\colon \textup{Hom}_{X_{\mathsf{pos}}}\webleft (b,c\webright )\times \textup{Hom}_{X_{\mathsf{pos}}}\webleft (a,b\webright )\to \textup{Hom}_{X_{\mathsf{pos}}}\webleft (a,c\webright ) \]
of $X_{\mathsf{pos}}$ at $\webleft (a,b,c\webright )$ is defined as either the inclusion $\text{Ø}\hookrightarrow \text{pt}$ or the identity map of $\text{pt}$, depending on whether we have $a\preceq _{X}b$, $b\preceq _{X}c$, and $a\preceq _{X}c$.
- Objects. We have
- A category $\mathcal{C}$ is posetal1 if $\mathcal{C}$ is equivalent to $X_{\mathsf{pos}}$ for some poset $\webleft (X,\preceq _{X}\webright )$.
1Further Terminology: Also called a thin category or a $\webleft (0,1\webright )$-category.