A subcategory of $\mathcal{C}$ is a category $\mathcal{A}$ satisfying the following conditions:

  1. Objects. We have $\text{Obj}\webleft (\mathcal{A}\webright )\subset \text{Obj}\webleft (\mathcal{C}\webright )$.
  2. Morphisms. For each $A,B\in \text{Obj}\webleft (\mathcal{A}\webright )$, we have
    \[ \textup{Hom}_{\mathcal{A}}\webleft (A,B\webright ) \subset \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ). \]
  3. Identities. For each $A\in \text{Obj}\webleft (\mathcal{A}\webright )$, we have
    \[ \mathbb {1}^{\mathcal{A}}_{A} = \mathbb {1}^{\mathcal{C}}_{A}. \]
  4. Composition. For each $A,B,C\in \text{Obj}\webleft (\mathcal{A}\webright )$, we have
    \[ \circ ^{\mathcal{A}}_{A,B,C} = \circ ^{\mathcal{C}}_{A,B,C}. \]


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: