Let $f\colon A\to B$ and $g\colon B\to C$ be morphisms of $\mathcal{C}$.

  1. The precomposition function associated to $f$ is the function
    \[ f^{*} \colon \textup{Hom}_{\mathcal{C}}\webleft (B,C\webright ) \to \textup{Hom}_{\mathcal{C}}\webleft (A,C\webright ) \]

    defined by

    \[ f^{*}\webleft (\phi \webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\phi \circ f \]

    for each $\phi \in \textup{Hom}_{\mathcal{C}}\webleft (B,C\webright )$.

  2. The postcomposition function associated to $g$ is the function
    \[ g_{*} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{C}}\webleft (A,C\webright ) \]

    defined by

    \[ g_{*}\webleft (\phi \webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ \phi \]

    for each $\phi \in \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: