8.2.2 Connected Components and Connected Categories

8.2.2.1 Connected Components of Categories

Let $\mathcal{C}$ be a category.

A connected component of $\mathcal{C}$ is a full subcategory $\mathcal{I}$ of $\mathcal{C}$ satisfying the following conditions:[1]

  1. Non-Emptiness. We have $\text{Obj}\webleft (\mathcal{I}\webright )\neq \emptyset $.
  2. Connectedness. There exists a zigzag of arrows between any two objects of $\mathcal{I}$.

8.2.2.2 Sets of Connected Components of Categories

Let $\mathcal{C}$ be a category.

The set of connected components of $\mathcal{C}$ is the set $\pi _{0}\webleft (\mathcal{C}\webright )$ whose elements are the connected components of $\mathcal{C}$.

Let $\mathcal{C}$ be a category.

  1. Functoriality. The assignment $\mathcal{C}\mapsto \pi _{0}\webleft (\mathcal{C}\webright )$ defines a functor
    \[ \pi _{0} \colon \mathsf{Cats}\to \mathsf{Sets}. \]
  2. Adjointness. We have a quadruple adjunction
  3. Interaction With Groupoids. If $\mathcal{C}$ is a groupoid, then we have an isomorphism of categories
    \[ \pi _{0}\webleft (\mathcal{C}\webright )\cong \mathrm{K}\webleft (\mathcal{C}\webright ), \]

    where $\mathrm{K}\webleft (\mathcal{C}\webright )$ is the set of isomorphism classes of $\mathcal{C}$ of .

  4. Preservation of Colimits. The functor $\pi _{0}$ of Item 1 preserves colimits. In particular, we have bijections of sets
    \[ \begin{gathered} \begin{aligned} \pi _{0}\webleft (\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}\webright ) & \cong \pi _{0}\webleft (\mathcal{C}\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\pi _{0}\webleft (\mathcal{D}\webright ),\\ \pi _{0}\webleft (\mathcal{C}\mathbin {\textstyle \coprod _{\mathcal{E}}}\mathcal{D}\webright ) & \cong \pi _{0}\webleft (\mathcal{C}\webright )\mathbin {\textstyle \coprod _{\pi _{0}\webleft (\mathcal{E}\webright )}}\pi _{0}\webleft (\mathcal{D}\webright ), \end{aligned} \\ \pi _{0}\webleft (\text{CoEq}\webleft (\mathcal{C}\underset {G}{\overset {F}{\rightrightarrows }}\mathcal{D}\webright )\webright ) \cong \text{CoEq}\webleft (\pi _{0}\webleft (\mathcal{C}\webright )\underset {\pi _{0}\webleft (G\webright )}{\overset {\pi _{0}\webleft (F\webright )}{\rightrightarrows }}\pi _{0}\webleft (\mathcal{D}\webright )\webright ), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

  5. Symmetric Strong Monoidality With Respect to Coproducts. The connected components functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\pi _{0},\pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0},\pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Cats},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset _{\mathsf{cat}}\webright ) \to \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright ), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathcal{C},\mathcal{D}} \colon \pi _{0}\webleft (\mathcal{C}\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\pi _{0}\webleft (\mathcal{D}\webright ) \xrightarrow {\cong }\pi _{0}\webleft (\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}\webright ),\\ \pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}} \colon \emptyset \xrightarrow {\cong }\pi _{0}\webleft (\emptyset _{\mathsf{cat}}\webright ), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

  6. Symmetric Strong Monoidality With Respect to Products. The connected components functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\pi _{0},\pi ^{\times }_{0},\pi ^{\times }_{0|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ) \to \webleft (\mathsf{Sets},\times ,\text{pt}\webright ), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \pi ^{\times }_{0|\mathcal{C},\mathcal{D}} \colon \pi _{0}\webleft (\mathcal{C}\webright )\times \pi _{0}\webleft (\mathcal{D}\webright ) \xrightarrow {\cong }\pi _{0}\webleft (\mathcal{C}\times \mathcal{D}\webright ),\\ \pi ^{\times }_{0|\mathbb {1}} \colon \text{pt}\xrightarrow {\cong }\pi _{0}\webleft (\mathsf{pt}\webright ), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness
This is proved in Proposition 8.2.1.1.1.
Item 3: Interaction With Groupoids
Clear.
Item 4: Preservation of Colimits
This follows from Item 2 and of .
Item 5: Symmetric Strong Monoidality With Respect to Coproducts
Clear.
Item 6: Symmetric Strong Monoidality With Respect to Products
Clear.

8.2.2.3 Connected Categories

A category $\mathcal{C}$ is connected if $\pi _{0}\webleft (\mathcal{C}\webright )\cong \text{pt}$.[2][3]


Footnotes

[1] In other words, a connected component of $\mathcal{C}$ is an element of the set $\text{Obj}\webleft (\mathcal{C}\webright )/\mathord {\sim }$ with $\mathord {\sim }$ the equivalence relation generated by the relation $\mathord {\sim }'$ obtained by declaring $A\sim ' B$ iff there exists a morphism of $\mathcal{C}$ from $A$ to $B$.
[2] Further Terminology: A category is disconnected if it is not connected.
[3] Example: A groupoid is connected iff any two of its objects are isomorphic.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: