8.2.4 Indiscrete Categories

Let $X$ be a set.

  1. The indiscrete category on $X$[1] is the category $X_{\mathsf{indisc}}$ where
    • Objects. We have
      \[ \text{Obj}\webleft (X_{\mathsf{indisc}}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X. \]

    • Morphisms. For each $A,B\in \text{Obj}\webleft (X_{\mathsf{indisc}}\webright )$, we have

      \begin{align*} \textup{Hom}_{X_{\mathsf{disc}}}\webleft (A,B\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft [A\webright ]\to \webleft [B\webright ]\webright\} \\ & \cong \text{pt}. \end{align*}

    • Identities. For each $A\in \text{Obj}\webleft (X_{\mathsf{indisc}}\webright )$, the unit map

      \[ \mathbb {1}^{X_{\mathsf{indisc}}}_{A} \colon \text{pt}\to \textup{Hom}_{X_{\mathsf{indisc}}}\webleft (A,A\webright ) \]

      of $X_{\mathsf{indisc}}$ at $A$ is defined by

      \[ \text{id}^{X_{\mathsf{indisc}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft [A\webright ]\to \webleft [A\webright ]\webright\} . \]

    • Composition. For each $A,B,C\in \text{Obj}\webleft (X_{\mathsf{indisc}}\webright )$, the composition map

      \[ \circ ^{X_{\mathsf{indisc}}}_{A,B,C} \colon \textup{Hom}_{X_{\mathsf{indisc}}}\webleft (B,C\webright ) \times \textup{Hom}_{X_{\mathsf{indisc}}}\webleft (A,B\webright ) \to \textup{Hom}_{X_{\mathsf{indisc}}}\webleft (A,C\webright ) \]

      of $X_{\mathsf{disc}}$ at $\webleft (A,B,C\webright )$ is defined by

      \[ \webleft (\webleft [B\webright ]\to \webleft [C\webright ]\webright )\circ \webleft (\webleft [A\webright ]\to \webleft [B\webright ]\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\webleft [A\webright ]\to \webleft [C\webright ]\webright ). \]

  2. A category $\mathcal{C}$ is indiscrete if it is equivalent to $X_{\mathsf{indisc}}$ for some set $X$.

Let $X$ be a set.

  1. Functoriality. The assignment $X\mapsto X_{\mathsf{indisc}}$ defines a functor
    \[ \webleft (-\webright )_{\mathsf{indisc}} \colon \mathsf{Sets}\to \mathsf{Cats}. \]
  2. Adjointness. We have a quadruple adjunction
  3. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\webleft (-\webright )_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \webleft (-\webright )^{\times }_{\mathsf{indisc}|X,Y} \colon X_{\mathsf{indisc}}\times Y_{\mathsf{indisc}} \xrightarrow {\cong }\webleft (X\times Y\webright )_{\mathsf{indisc}},\\ \webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}} \colon \mathsf{pt}\xrightarrow {\cong }\text{pt}_{\mathsf{indisc}}, \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.


Footnotes

[1] Further Terminology: Sometimes called the chaotic category on $X$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: