Let $X$ be a set.
-
Functoriality. The assignment $X\mapsto X_{\mathsf{indisc}}$ defines a functor
\[ \webleft (-\webright )_{\mathsf{indisc}} \colon \mathsf{Sets}\to \mathsf{Cats}. \]
-
Adjointness. We have a quadruple adjunction
-
Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure
\[ \webleft (\webleft (-\webright )_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}},\webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ), \]
being equipped with isomorphisms
\[ \begin{gathered} \webleft (-\webright )^{\times }_{\mathsf{indisc}|X,Y} \colon X_{\mathsf{indisc}}\times Y_{\mathsf{indisc}} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\times Y\webright )_{\mathsf{indisc}},\\ \webleft (-\webright )^{\times }_{\mathsf{indisc}|\mathbb {1}} \colon \mathsf{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{pt}_{\mathsf{indisc}}, \end{gathered} \]
natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.