Let $\mathcal{C}$ and $\mathcal{D}$ be categories, and write $\mathcal{C}^{\mathsf{op}}$ for the opposite category of $\mathcal{C}$ of .

  1. Given a functor
    \[ F\colon \mathcal{C}\to \mathcal{D}, \]

    we also write $F_{A}$ for $F\webleft (A\webright )$.

  2. Given a functor
    \[ F\colon \mathcal{C}^{\mathsf{op}}\to \mathcal{D}, \]

    we also write $F^{A}$ for $F\webleft (A\webright )$.

  3. Given a functor
    \[ F\colon \mathcal{C}\times \mathcal{C}\to \mathcal{D}, \]

    we also write $F_{A,B}$ for $F\webleft (A,B\webright )$.

  4. Given a functor
    \[ F\colon \mathcal{C}^{\mathsf{op}}\times \mathcal{C}\to \mathcal{D}, \]

    we also write $F^{A}_{B}$ for $F\webleft (A,B\webright )$.

We employ a similar notation for morphisms, writing e.g. $F_{f}$ for $F\webleft (f\webright )$ given a functor $F\colon \mathcal{C}\to \mathcal{D}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: