• For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
    • An object $A_{B}$ of $\mathcal{C}$;
    • A morphism $s_{B}\colon B\to F\webleft (A_{B}\webright )$ of $\mathcal{D}$;
    • A morphism $r_{B}\colon F\webleft (A_{B}\webright )\to B$ of $\mathcal{D}$;
    satisfying the following condition:
    • For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$ and each pair of morphisms
      \begin{align*} r & \colon F\webleft (A\webright ) \to B,\\ s & \colon B \to F\webleft (A\webright ) \end{align*}

      of $\mathcal{D}$, we have

      \[ \webleft [\webleft (A_{B},s_{B},r_{B}\webright )\webright ]=\webleft [\webleft (A,s,r\circ s_{B}\circ r_{B}\webright )\webright ] \]

      in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: