• For each $B\in \text{Obj}\webleft (\mathcal{D}\webright )$, there exist:
    • An object $A_{B}$ of $\mathcal{C}$;
    • A morphism $s_{B}\colon B\to F\webleft (A_{B}\webright )$ of $\mathcal{D}$;
    • A morphism $r_{B}\colon F\webleft (A_{B}\webright )\to B$ of $\mathcal{D}$;
    satisfying the following conditions:
    1. The triple $\webleft (F\webleft (A_{B}\webright ),r_{B},s_{B}\webright )$ is a retract of $B$, i.e. we have $r_{B}\circ s_{B}=\text{id}_{B}$.
    2. For each morphism $f\colon B'\to B$ of $\mathcal{D}$, we have
      \[ \webleft [\webleft (A_{B},s_{B'},f\circ r_{B'}\webright )\webright ]=\webleft [\webleft (A_{B},s_{B}\circ f,r_{B}\webright )\webright ] \]

      in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: