A functor $F\colon \mathcal{C}\to \mathcal{D}$ is essentially injective if it satisfies the following condition:

  • For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, if $F\webleft (A\webright )\cong F\webleft (B\webright )$, then $A\cong B$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: