-
The functor $F$ is an equivalence of categories.
-
The functor $F$ is fully faithful and essentially surjective.
-
The induced functor
\[ \left.F\right\vert _{\mathsf{Sk}\webleft (\mathcal{C}\webright )}\colon \mathsf{Sk}\webleft (\mathcal{C}\webright )\to \mathsf{Sk}\webleft (\mathcal{D}\webright ) \]
is an isomorphism of categories.
-
For each $X\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the precomposition functor
\[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]
is an equivalence of categories.
-
For each $X\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor
\[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]
is an equivalence of categories.