• The functor $F$ satisfies the following conditions:
    1. The functor $F$ is faithful, i.e. for each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
      \[ F_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

      of $F$ at $\webleft (A,B\webright )$ is injective.

    2. For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the restriction
      \[ F^{\textup{iso}}_{A,B} \colon \textup{Iso}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Iso}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \]

      of the action on morphisms of $F$ at $\webleft (A,B\webright )$ to isomorphisms is surjective.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: