A functor $F\colon \mathcal{C}\to \mathcal{D}$ is corepresentably full on cores if, for each $X\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, the postcomposition by $F$ functor

\[ F_{*}\colon \mathsf{Core}\webleft (\mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\webright )\to \mathsf{Core}\webleft (\mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright )\webright ) \]

is full.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: