• Associativity. Let $F,G,H,K\colon \mathcal{C}\overset {\rightrightarrows }{\rightrightarrows }\mathcal{D}$ be functors. The diagram
    commutes, i.e. given natural transformations
    \[ F\mathbin {\overset {\alpha }{\Longrightarrow }}G\mathbin {\overset {\beta }{\Longrightarrow }}H\mathbin {\overset {\gamma }{\Longrightarrow }}K, \]

    we have

    \[ \webleft (\gamma \circ \beta \webright )\circ \alpha =\gamma \circ \webleft (\beta \circ \alpha \webright ). \]

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: