• Componentwise Inverses of Natural Transformations Assemble Into Natural Transformations. Let $\alpha ^{-1}\colon G\Longrightarrow F$ be a transformation such that, for each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, we have
    \begin{align*} \alpha ^{-1}_{A}\circ \alpha _{A} & = \text{id}_{F\webleft (A\webright )},\\ \alpha _{A}\circ \alpha ^{-1}_{A} & = \text{id}_{G\webleft (A\webright )}. \end{align*}

    Then $\alpha ^{-1}$ is a natural transformation.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: