• Monomorphisms and Epimorphisms. Let $\alpha \colon F\Longrightarrow G$ be a morphism of $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$. The following conditions are equivalent:
    1. The natural transformation
      \[ \alpha \colon F \Longrightarrow G \]

      is a monomorphism (resp. epimorphism) in $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$.

    2. For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, the morphism
      \[ \alpha _{A} \colon F_{A} \to G_{A} \]

      is a monomorphism (resp. epimorphism) in $\mathcal{D}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: