A $1$-morphism $f\colon A\to B$ of $\mathcal{C}$ is representably fully faithful on cores if the following equivalent conditions are satisfied:

  1. The $1$-morphism $f$ is representably faithful on cores (Definition 11.1.5.1.1) and representably full on cores (Definition 11.1.4.1.1).
  2. For each $X\in \text{Obj}\webleft (\mathcal{C}\webright )$, the functor
    \[ f_{*}\colon \mathsf{Core}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (X,A\webright )\webright )\to \mathsf{Core}\webleft (\mathsf{Hom}_{\mathcal{C}}\webleft (X,B\webright )\webright ) \]

    given by postcomposition by $f$ is fully faithful.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: